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ABSTRACT 

The interrelation between an inverted hierarchy 

mechanism and asymptotic freedom in supersymmetric theories 

is analyzed in two models for which we performed a detailed 

analysis of the effective potentials and effective 

couplings. We find it difficult to accommodate an inverted 

hierarchy together with asymptotic freedom for the 

Matter-Yukawa couplings. 

* 
Supported in part by the Israel Academy of Sciences and 
Humanities - Basic Research Foundation 

t Supported by the Lady Davis Foundation 

tt On leave (Aug. 1982 - Aug. 1983) from Physics Dept. 
Technion,Israel Inst. of Tech. Haifa, Israel. 

0 Operated by Universities Research Association Inc. under contract with the United States Department of Energy 



-2- FERMILAB-Pub-82/73-THY 

One of the most puzzling and long lasting problems in 

theoretical high energy physics is the gauge hierarchy 

problem (1) (2) . Supersymmetry (3) provides a possible 

solution to this problem. This symmetry is, of course, 

broken at ordinary energies as dictated by the known 

particle spectrum. An interesting mechanism suggested by 

WittenC4) , uses a variant of O'Raifeartaigh model 15' to 

generate at the tree level the necessary spontaneous 

breaking of supersymmetry at a scale M < loI Gev. 

CM- 10"Gev in ref. 4 or lo" Gev in the geometric 

hierarchy of ref. 6. ) The large scale <X> , presumably 

tx> - 0 ( lo'" Gev) is generated dynamically and thus 

provides the large mass needed in the theory. 

The existence of Witten's inverted hierarchy scenario 

depends on the behavior of the coupling constants in the 

theory at large mass scale. Though asymptotic freeedom in 

all coupling constants is not a necessary condition for 

building a phenomenologically acceptable model, this 

property certainly helps either by justifying a low order 

calculation or neglecting the effect of certain reasonably 

small and decreasing couplings at various stages of the 

analysis. Thus, it is interesting to find out if the 

coupling constants involved in this type of models will not 

only produce the inverted hierarchy but also are (possibly 

all of them) asymptotically free. We present here a 

detailed analysis of two spontaneously broken supersymmetric 

models, their one loop effective potential and the behavior 
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of their effective coupling constants at large scale. We 

discuss the consequences of demanding an inverted hierarchy 

combined with asymptotic freedom. The potential in 

supersymmetric theories is generated from a superpotential 

W(A) in the form: 

h, =z,?$+I' + ix(D')' PI 
i , 4 J 

where 

D” = ed Jq + 7-“A (2) 

is the gauge interaction contribution, r4is the generator 

of the group G in the given representation and e, the 

associated gauge coupling. The necessary condition for the 

renormalizability of the theory is that W(A) should be a 

polynomial at most of order three 

W CR) = a,~' + bi. Aid 
J 

+ qjk A'AW 
9W The absence of a solution to rAi= 0 for all i implies a 

spontaneous breakdown of supersymmetry at the tree level. 

The most quoted simple example is the O'Raifeartaigh model: 
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W(A,x, Y) = 
% 

x w- h’) + x Y A (41 

in which ‘3W 
TX = O and ca_w 3Y =o cannot be satisfied 

simultaneously. The interesting feature in this model is 

that the vacuum expectation value (vev) of X, the scalar 

member of the superfield, is undetermined at the tree level. 

Radiative corrections through the one loop effective 

potential can fix the value of X and set a scale in the 

theory which could be much higher than the intrinsic scale 

M. Clearly, such a scenario is reminiscent of what is 

expected from a solution of the hierarchy problem'4' . 

Recently, as further steps towards building a realistic 

model, the following SU(N) extensions of Eq. 4 were widely 

employed: 

h/, (A,x,\/) = 2 x C-G R”- PI’) - X-G. A'Y (5) 

w, h, x, Y) = 1 X (T, Q*- h’) - X T-.. AY (61 

A and Y are in the adjoint representation and X is a singlet. 

Both have been studied first by Witten "' ,for the SU(5) 

gauge group. The tree level potential v(qx,v) derived 

from y(Q,X,Y) has a minimum at 



-5- FERMILAB-Pub-82/73-THY 

A= gM(x’+30 (2,,2,,2,-3,-X) 

The vev Is of X and Y are related to each other at the 

minimum of the potential by Y = - (>%/A )diag 

(2,2,2,-3,-3) but the vev of X is undetermined at the tree 

level. The minimum for the potential V. of the second 

model occurs for T,A*= 

2$.X A) 

(2 g-h’-A2)/r 8' with Y 

and the SU(5) breaking is not determined uniquely 

L this levelC8) . 

The one-loop contribution to the effective potential is 

given by(l"' : 

AVc4, = c uF &I R, ( M:(d,/rL) G4rrZ (7) 
i 

where the sum is over all helicity states, M; are the boson 

and fermion mass eigenvalue yL is a renormalization scale, 

F = 0 for bosons and F = 1 for fermions. The effective 

potential vat large X isC4': 

v , (X) = 3* [ 1 $&9A; -,rYQ (lXq%,] @, % 0 

Indeed, if initially Haa &aa <soA ,the effective 
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potential decreases as X increases until finally 

perturbation theory breaks down. However, if the 

Matter-Yukawa coupling x becomes dominant with increasing X, 

the effective H 
+ 

becomes larger than 50/29 and the 

coefficient of the logarithm in (8) will change sign. Thus 

necessarily a stable minimum will be created near the value 

X, for which Ii'Cx,) = soA - If this picture is correct, a 

hierarchy of scales has been constructed with the large 

scale being generated dynamically at X h M +afp (I/e-, , 

while the fundamental scale M is the supersymmetry breaking 

scale and can in principle be N << X . Clearly, as 

mentioned, the realization of this possibility depends on 

the behavior of the relevant coupling constants in the 

ultraviolet limit, which will be discussed later. We will 

first calculate the effective potential for the model in 

Eq. 6 

In order to calculate the boson mass matrix it is 

convenient to decompose A as 

A - h, +& (Q+i8) 

with A displayed as 5x5 matrix A =z A’*,& with 8(8,1) 
i-r 

fields, 3(1,3), one(l,l), 6(3,2) and 6(?,2) fields, where 

the entries (m,n) stand for the representations under the 

SU(3) and SU(2) subgroups. As in Witten 's model'4' the 

contribution of the twelve (3,2) and (?,2) fields to the 
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mass matrix from the D-term is negative. The fermion mass 

matrix determined by 

(a1w/7~ib5+j)Y'Yj 

the Yukawa coupling 

and the coupling between "gauginos" h 

(the supersymmetric partners of Yang Mills fields) in the 

adjoint representations and the fermionic partners of A and 

Y fields. The mass matrices which we have to diagonalize, 

in order to evaluate the one-loop contribution in Eq.(7) are 

not larger than 3x3 matrices. A typical fermion mass matrix 

looks like 

Tr$= A 

c 

2 x a x Gp 

0 0 

vzq" 0 0 ) 

(9) 

where 

wk = ( 9L~z-~‘)/60 a’ 

The two left-handed and the two right-handed fermions 

associated with m, have masses 

^n\,l = 2. 
% 
‘IXIL + A’+ 30 

2 
+vc +, pXly4gfIx,‘+4h’42* ‘IT’ 

a 

00) 
2z L 

% 
2lxlL + xx + 30 rlrr f 2 

8 B 
“IX/‘+ (J(i) 



One general constra 

(mass) 2 matrices in the 

i 
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nt on the diagonal elements of 

supersymmetric theories is given by 

the FGP mass relation (II 1 , which in the absence of an extra 

U(l) gauge is given by 

T,[m,‘] +3 7xm;7 = L -f-z CrnFrnt,l 00 

The FGP mass formula provided an extra check on our 

calculations. Substituting the masses of 60 real scalars, 

12 vector bosons and 48 fermions, which depend on lx\' , in 

Eq.(7) we find that the effective potential including the 

lowest order result is given by (IZ) : 

v,(x) = A’ (ML- ;, +,$ I-~~~-I~(H-~.)~~J~~~ (,L) 
8) 

in (12) has a The X field will increase if the logarithm 

negative coefficient K: 

k s AY[ ILrr‘ -3 - Jo M$=’ + 5 5%; 
d 

03) 

In order to have the tree level potential (derived from Eq. 

(‘3)) Y(,,,.L,,) at KA’=(z$h’-X’)/LgL , Y= z~A,$ 

smaller than T((min) at A=Y=O, we impose vH <<I ; this 
2 

same condition results in K (0. Whether this coefficient 

will turn positive at lage X will depend here, as in Eq. 
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(8), on the detailed evolution of the effectiveAre, and 

M at large X. This, along with the question of asymptotic 

freedom of the coupling constants for the two models in Eq. 

(5) and (61, will be discussed now. 

In the case of the superpotential in Eq. (5) the 

effective coupling constants are determined 03) by: 

3 

r $i = @%)- L -(3-n)N + 2 J 

- 6 c,@) e’ + 82” s *+ AL] 

r A3 = +.J- 4 Cl(G) ee + (6+ ‘““f + 4 AyAj 
Jr r 

(‘4 A) 

(14 c) 

for the gauge group SU(N) with n and m the number of chiral 

superfields in adjoint and fundamental representation and 

C,ct, = N . 

In case of W, in Eq. (6) one obtains the following 

relations (Eq. 14a is not altered) 

dx r q = (&)J 4c,ca, e z + 4 g) 

r + = -2~ 
dr (477Y I 

- 4 c (G) e a a. + (6 f 2N’)BL] 

We will need-also the evolution of M' in Eq. 12 . This is 
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given by 

r LY = t-l dr (G, L c C,(G) e a - 2 8 L ) 
We will continue now the analysis for the BB(5) case. 

Equations 14(a),(b),(c) can be rewritten in the form: 

dG’ Ga 
6r = (‘lrr)L ( -32 + IIL G’ -p 32,s l-v) 

dk’ M-rz -= 
dr (GL c -5~ + 16 Ga + 4~ ML) 

(14 a) 

(I6 1,) 

where G'= '/=a, j-l 'z XL.+ and f is the scale parameter, 

I 

L.&y 

I-= 44' eycy 
0 

Clearly, if initially we choose -52 +IbGL+4.rkL>0 then 

cIL I as well as CL Increases as r-00. The increase of 

k' is necessary for Witten's scenario to work in Eq. (8). 

If k' and GL increase, then either ), and g are 

increasing or ez decreases faster than these two coupling 

constants (+I' . Looking now back to Eqs. 14(b)(c), we see 

that the later possibility would imply that asymptotically 

both r d+ r and r 3 are positive and thus j, and g are 

non-asymptotically free. Writing an equation for r d!! 
*r 

where 

R= A/$ shows that R decreases provided that initially 
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XL - % - This last condition assures also that the correct 

tree level minimum of ~CA) has been chosen. Note that 

the inclusion of higher orders in the renormalization group 

equations could in principle alter this picture. However, 

as long as the involved couplings are small (e.g. &,:, 

for supersymmetric GUT is about 24) we can use the 

renormalization group equations in one-loop approximation to 

study the evolution of the coupling constants at larger 

For the superpotential hz in Eq. (6) we have the set 

of equations (14a), (15a-c). In general, if 

de 
r dr = b/d 

r 
d% 
*r 

=A 3+Be2 
B 8 

(16 a> 

(It b) 

with A>o and 0<0 , then clearly for 13- b, <o there are 

two fixed points: one at 9 
'/=s = G'= -@-b,)/R and the 

other, the ultra-violet stable one, at G;f o . Thus, for 

gL <[(be-m/i J eL v the Matter-Yukawa coupling 
& 

L goes to 

zero more rapidly than etas 
r 

-3 00 . Thus we have also 

X-0 and h-cm , as P 400 as seen in Eqs. (15a) and 

(15C). Asymptotic freedom for 
2 

and X in this model is 

feasible due to the fact that there is "less" matter 
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interaction in h/, than in W, . For example, there is no 

contribution in the lowest order to the anomalous dimension 

of the superfield Y from interaction with other superfields; 

the anomalous dimension of the A superfield is also reduced 

here. 

In order to see whether the asymptotically free 

coupling constants in this case can also produce Witten's 

inverted hierarchy, Eq. (13) has to be examined. The 

differential equation for %*'a h2a2/Aa is 

r dGii' 4%' dr = ' (iz L c L 6 c@ - (3-h) td + F ] e= - 
and thus G'- - as -00. 

r 
Now, to check 

L -~-I,,~~+sG-~ in Eq. (13), we note also that 

r$& t where E=.$zGL . Thus, if the coefficient K of 

,&/Xl is initially negative, then we see that also 

asymptotically it stays negative and Witten's scenario is 

not guaranteed in this case. Note, however, that the 

reversal of the sign of K at an asymptotic scale is not a 

necessary condition for an i&rted hierarchy scenario since 

it is enough that nearby (x>- ~(/e'~c~w) kc,,, becomes 

positive and later at larger scales it approaches its 

asymptotic negative regime. Such behavior of the expression 

in Eq. (131, though it is obtainable in principle (by 

tunning the coupling constants and their initial condition 

properly), may be at least as difficult to implement in a 
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realistic model as is the necessity to work with 

non-asymptotically free coupling in the case of W, . 

We were interested above merely in the existence of an 

inverted gauge hierarchy, namely, whether one can prove that 

indeed the coefficient of R,X necessarily changes sign. 

This, of course, is only a necessary condition to produce 

Witten's hierarchy, the precise value that <x> obtains, the 

representation one has to use etc. (1”) , are very important 

problems and difficulties one has to overcome in building 

realistic models. 

In conclusion, the analysis of two superpotentials 

presented above shows an interesting interrelation between 

two properties: (a) inverted hierarchy, and (b) asymptotic 

freedom of the Matter-Yukawa couplings. We found that it is 

difficult to accommodate one together with the other. The 

superpotential 1J, in Eq. (5) will necessarily produce an 

inverted hierarchy scenario. We proved, however, that all 

Yukawa couplings are non- asymptotically free. On the other 

hand, in W, of Eq. (6) where all Yukawa couplings are 

asymptotically free, we have proved, however, that Witten's 

scenario may be implemented only by tunning parameters; it 

does not necessarily exist as in the case of W, . From the 

experience with the above calculations it seems to us that 

this may very well be a general feature of supersymmetric 

grand unifying theories. Whether one can show that 

properties (a) and (b) above are mutually excluded (or are 

at least hardly implementable together) in any SUSY GUT is 

left here as an interesting theoretical open question. 
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Upon completion of our work, we received several papers 

which deal with some of the aspects discussed here as well 

as related topics (‘5). 
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FOOTNOTES 

Footnote 1 (fl): Problems due to the presence of light 

color octet fields were widely discussed 

recently. See for example, refs. 14,15. 

Footnote 2 (f2): This issue has been studied by Banks and 

Kaplunovsky (ref. 15). 


